Calculate Initial Rate For Formation Of C At 25 В€˜C If 0 50m And B 0 075m

Calculate the initial rate for the formation of c at 25 ∘c, if [a]=0.50m and [b]=0.075m

Answers:

The rate of formation of a product depends on the the concentrations of the reactants in a variable way.

If two products, call them A and B react together to form product C, a general equation for the formation of C has the form:

rate = k*[A]^m * [B]^n

Where the symbol [ ] is the concentration of each compound.

Then, plus the concentrations of compounds A and B you need k, m and n.

Normally you run controled trials in lab which permit to calculate k, m and n .

Here the data obtained in the lab are:

Trial      [A]      [B]         Rate

            (M)     (M)          (M/s)

1         0.50    0.010      3.0×10−3

2         0.50    0.020       6.0×10−3

3         1.00 0  .010       1.2×10−2

Given that for trials 1 and 2 [A] is the same you can use those values to find n, in this way

rate 1 = 3.0 * 10^ -3 = k [A1]^m * [B1]^n

rate 2 = 6.0*10^-3 = k [A2]^m * [B2]^n

divide rate / rate 1 => 2 = [B1]^n / [B2]^n

[B1] = 0.010 and [B2] = 0.020 =>

6.0 / 3.0  =( 0.020 / 0.010)^n =>

2 = 2^n => n = 1

 

Given that for data 1 and 3 [B] is the same, you use those data to find m

rate 3 / rate 1 = 12 / 3.0   = (1.0)^m / (0.5)^m =>

4 = 2^m => m = 2

Now use any of the data to find k

With the first trial: rate = 3*10^-3 m/s = k (0.5)^2 * (0.1) =>

k = 3.0*10^-3 m/s / 0.025 m^3 = 0.12 m^-2 s^-1

Now that you have k, m and n you can use the formula of the rate with the concentrations given

rate = k[A]^2*[B] = 0.12 m^-2 s^-1 * (0.50m)^2 * (0.075m) = 0.0045 m/s = 4.5*10^=3 m/s

Answer: 4.5 * 10^-3 m/s