The areas of three adjacent faces of a cuboid are A1, A2, and A3 . If its volume is V, prove that V2 = A1. A2. A3
Answers:
Let, length, breadth and height of the cuboid be a, b and c respectively.
∴ Volume = abc
Also, A1 = ab, A2 = bc , A3 = ca
∴ A1.A2.A3 = (ab)(bc)(ca) = a2 b2 c2 = (abc)2 = V2
⇒ V2 = A1.A2.A3