And Are Points Side Triangle Lmn Such That Through Line Is Drawn Parallel To Lm To Meet Mn At

X and y are points on the side LN of the triangle LMN , such that LX = XY = YN . Through X, a … figure). Prove that : ar(△LZY) =…


Here, △XZM and △XZL are on the same base (XZ) and lie between the same parallels (XZ || LM). 

∴ ar(△XZL) = ar(△XZM) 

Adding ar(△XZY) on both sides , we have 

ar(△XZL) + ar(△XZY) = ar(△XZM) +  ar(△XZY) 

 ⇒ ar(△LZY) = ar(quad.MZYX)