D and E are points on the sides AB and AD respectively of a ΔABC such that DE ∥ BC and divides ΔABC into two parts, equal in area….
Answers:
We have
area(ΔADE) = area (trapezium BCED)
⇒ area (ΔADE) + area(ΔADE)
= area(trapezium BCED) + area(ΔADE)
⇒ 2 area(ΔADE) = area(ΔABC) ….(i)
In ΔADE and ΔABC, we have
∠ADE = ∠B [∵ DE ∥ BC]
∴ ∠AED = ∠C (corresponding angles)]
and ∠A = ∠A, [Common]
∴ ΔADE ~ ΔABC
⇒ area(ΔADE)/area(ΔABC) = AD2/AB2
⇒ area(ΔADE)/2 area(ΔADE) = AD2/AB2
⇒ ½ = (AD/AB)2
⇒ AD/AB = 1/√2
⇒ AB = √2 AD
⇒AB = √2(AB – BD)
⇒ (√2 – 1)AB = √2BD
⇒ BD/AB = (√2 – 1)/√2
= [(2 – √2)/2]