ABCD is a parallelogram and O is the point of intersection of its diagonals. If ar(ΔAOD) = 4 cm2, find area of parallelogram ABCD.
Answers:
Here, ABCD is a parallelogram in which its diagonals AC and BD intersect each other in O.
∴ O is the mid – point of AC as well as BD.
Now, in △ADB , AO is its median
∴ ar(△ADB) = 2 ar(△AOD) [∵ median divides a triangle into two triangles of equal areas]
So, (△ADB) = 2 × 4 = 8 cm2
Now, △ADB and ||gm ABCD lie on the same base AB and lie between same parallel AB and CD .
∴ ar(ABCD) = 2 ar(△ADB)
= 2 × 8
= 16 cm2